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ABSTRACT 

The a i m  of the paper i s  the computation of short-period per turba-  

tions of the elements of the orbits of art if icial  satell i tes,  caused by 

atmospheric drag. The density function of the ear th ' s  atmosphere 

includes the effect of the atmospheric bulge, described by a formula 

given by Jacchia. 

of construction of the disturbing function on an electronic computer;  the 

formulas  needed for such computations and some numerical  resul ts  a r e  

given. 

The method of the solution is in essence the method 



THE SHORT-PERIOD DRAG PERTURBATIONS OF THE ORBITS 

OF ARTIFICIAL SATELLITES' 

2 3 L. Sehnal and Sara  B. Mills 

1. THE DENSITY FUNCTION 

The variation of the density of the ear th 's  a tmosphere can be 

described by a formula given by Jacchia (1960): 

p(z)  = p o ( l  t a cos n '  g) J 

where 

p(z) denotes the density in the height z (km) above the 

ear th ' s  surface,  

+' is the angle made by the radius vector of the satellite 
and the axis of the atmospheric bulge, 

a and n' a r e  a rb i t ra ry  numbers,  and 

p 0 i s  given by the relation 

'This work w a s  supported in part  by Grant No. NsG 87-60 f rom the 

2 
National Aeronautics and Space Administration. 

C ele s t ial  me c hanic ian, Smiths onian As trophy s ic a1 Obs e rvato r y  ; now 
with Astronomical Institute, OndTe jov, Czechoslovakia. 

5 Programmer ,  Computations Division, Smithsonian Astrophysical 
Ob s e r vat0 ry . 
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- 
log po = a t bz t c exp ( -0 .01  z) , 

where a, b, and c a r e  empir ical  coefficients. 

- 
The coefficients a ,  a, b, and c and the exponent n '  a r e  found for a 

given date and given satellite a s  follows: 

temperature  T 

for  the height of the perigee of the satel l i te ' s  orbit,  we find the tempera-  

tu res  T 

The nighttime exospheric 

is found f r o m  the measured  solar  f l u x  a t  10.7 cm. Then, 
0 

and Tm (daytime maximum) a s  
1 / 2  

= 1.14 To ; T M =  1 . 2 8 T o  . 
T1 / 2  

F o r  the temperatures  To, T1 ,2, and TM we find f rom the tables 

The coefficient a of Jacchia (1964) the densit ies poJ  P ~ , ~ ,  and pM. 

and the exponent n' a r e  then found f r o m  the formula 

P = Po (1 t p M - p o  "'? cos 

We have then the equations 

and 

(3 )  
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We then take f rom the same tables the values of the densit ies p (z ) for  

the temperature  To a t  three different points z 

so  that we have three equations 

O i  
above the perigee height, i 

- 
log p 0 1  (2.) = a t bzi t c exp ( -0 .01  zi) (i = 1 , 2 , 3 )  , (4) 

f rom which we obtain the coefficients a, b, and c .  

Thus the density function is computed separately fo r  each date and 

orbit .  

- 3 -  



2. THE EQUATIONS FOR THE VARIATIONS OF THE ELEMENTS 

The change of an a rb i t r a ry  orbital  element u, caused by the 

atmospheric drag, i s  given by the equation 

where Ku  is a constant different for  each element and dependent mainly 

on the physicalcharacter is t ics  of the satellite. The function F (E)  is  afunc- 

tion of the eccentric anomaly E and can be derived f rom the equations 

given by Sterne (1960) o r  in a transcription by Izsak (1960). 

tion contains in itself the effect of the rotation of the atmosphere.  It 

can be developed in the Fourier  s e r i e s ;  it will be better for our pur- 

poses to t ransform it into a s e r i e s  with powers of cost  E instead of the 

s e r i e s  with multiples of argument of trigonometric functions. 

0- 

This func- 

The coefficients of the t e rms  of the se r i e s  can be again expressed 

as the se r i e s  of the powers of the eccentricity e. 

two kinds of the function F,(E): 

We have then generally 

T L 

and 

T L 

t = O  u=o 

-4- 



The coefficients gu (t)  depend on the smal l  parameter  d introduced by 

Sterne (1960), 

WE 4 7  d =-  1 - e  cos i , n ( 7 )  

where o 

of the satellite, and i is the orbital inclination. The summation l imit  

L depends then on the precision in powers of eccentricity wanted in the 

computation. 

is the angular velocity of the earth,  n is  the mean motion E 

We have now to express  the density function p as the function of 

the eccentric anomaly and multiply it with one of the se r i e s  (6a) or  

(6b), to be able to integrate equation (5). We shall  t ransform the 

function p as follows: 

2 n’ i &  =E po a i  cos J 

where 

n’ = 0 1 a 1  = 1 

n’ = n‘ 
2 a 2  = a  

-5- 



The resul t  will then consist  of two par t s ,  the second one corresponding 

to the effect of the atmospheric bulge. 

the problem, we can take only one of the two t e r m s  in equation (8), thus 

dropping the index i. We shall  introduce into this t e r m  the substitution 

F o r  the analytical t reatment  of 

z - z O = a e - a e c o s E  , 

z 

ducing new constants k. ( j  = 0, 1, 2, 3) by equations 

being the height of the perigee and a the semimajor  axis.  Intro- 0 

J 

k = - I n  10 x bae , 1 

k 2 = I n  10 c exp[-0.01 (zo t aeg , 
and 

k3 = tO.01 a e  , 

(i = 1, 2) , 

( 9 )  

we have for the general  t e r m  of the density function the expression 

(10) 
n’ & 

2 -  
p N ko exp (kl cos E )  exp[kZ exp (k3 cos E)] cos 

We shall now introduce some development of the functions contained 

in the density function (10) : 

c 
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"1 i 
i! exp (kl C O S  E)  =x - cos E 

i =O 

Multiplying equations (11) and (12), we obtain the expression for the 

exponential par t  of the density function in the form 

co 

exp (kl cos E)  exp[k2 exp (k3 cos E,] =c cosPE - b (1 3) P J  
p=o 

where 

O0 kJ p - i  c 2 j P - i  
i =O j =O 

The actual limits that must be used in the computation of the 

coefficient (14) depend on the numerical values of the constants k. and 

a r e  best  determined numerically. The coefficients b make a con- 

vergent se r ies ,  growing f rom the beginning to a cer ta in  limit, then 

decreasing monotonically after this l imit  o r  a second maximum, de- 

pending on the values of k 1' k2J and k 

1 

P 

3' 

The trigonometric t e r m  in equation (10)  is  expressed using some 

s imple relations: 

-7  - 



L =O 

where 

n' n' 
n 1 =T(T - I)(+ - 2) ... (+ - 1 t 1) . 

We shall  now suppose that the position of the orbital  plane and the 

axis of the atmospheric bulge remain constant; this is nearly true for  

one revolution of the satell i te,  so that the short-period perturbations 

can  be  determined, assuming this hypothesis, with sufficient accuracy. 

The whole theory could be, of course, developed considering the r ea l  

changes of the elements of the satellite orbi t  and the motion of the sun. 

In this case ,  we should obtain a good description of the behavior of the 

orbi t  during longer t ime intervals, including-the long-period per turba-  

tions. 

The angle +' can  be found f rom the relations of spherical  trigonom- 

etry,  which were  given by Cook and King-Hele (1965). 

s imi la r  no tation, writing 

We shall use a 

cos  4' = A c o s  v t B sin v , 

v being the t rue anomaly. 

stants,  given by the equations 

The coefficients A and B will then be con- 

-8 -  



1 
2 A = - s in  z sin i [cos(, - L)  - cos(w t L)] 

t sin 2 E  -[cos 2 i  - c o s ( w t S 2 - L - A )  t s inZicos(w-S2-LtA)]  
2 2 2 

t c o s 2 2 [ c o s 2 $ c o s ( w t S 2 - L - A )  t sin2i 2 c o s ( o t S 2 t L - A ) ]  , 

1 B = - s i n ~ s i n i [ s i n ( w - L )  2 t s i n ( w t L ) ]  

2 E  21 t sin z[- sinZi s i n ( w - Q - L t A )  - cos s in(wtS2tL-A)]  2 

t cos2$[ -  s i n 2 i  s i n ( w - n t - t t + )  - c o s 2 i  s i n ( w t ~ - ~ - ~ ) ]  , 2 2 

(17) 

where E is the obliquity of the ecliptic, w is the argument of perigee, 

$2 i s  the longitude of the ascending node, L is the longitude of the sun, 

and A i s  the angle of which the axis of the bulge lags behind the direc-  

tion to the sun in right ascension. 

Introducing the eccentr ic  instead of the t rue anomaly, we have 

1 (1 8) 

r being the radius vector of the satellite. 

-9  - 



Then we can write 

and 

PI = n I C  I 

The coefficients P 
se r i e s  in the powers of the eccentricity: 

can  be then expressed f rom equation (18) a s  the I 

L 

v=o 

where the coefficientsX") a r e  given a s  s e r i e s  in powers of the tr igo- 

nometric functions of the eccentric anomaly E :  
V 

The indices k will never be greater  than I, so  that the limit of s u m -  
I mation can be writ ten a s  J . The ratio (a / r )  is easily expressed as 

(:y = (1 - e cos E)-' =c k!') e' cos' E . 
J 

j =O 

-10- 



Multiplying equations (21) and (22)  and introducing the resul t  into 

equation (1 9) ,  we have finally 

& T-1 L J L  
(1) a s p - j  t ($)2 x c o s t  s in  Ex e p x  k j Y t - j  

t=O p=O 8=0 j = O  

This expression must  be now multiplied by expression (13) ,  the 

Introducing the substitution exponential part of the density function. 

and establishing the fixed summation limit in equation (13) as P, we 

shall  have 

exp (k cos E )  exp[k2 exp (k3 cos E)] cos n' 
1 

S L s - 1  L 

s =o p=o s =o 

-11- 



where we have introduced the factors C ( ' )  and S(') by 
P P 

J L  

and 

T-1 J L  

The expression (25) will now be  multiplied by the function F (E), 
We shall take the formula (6a) for  the detailed 

U 

given by (6a) o r  (6b). 

explanation. After the multiplication, we obtain the expression 

R L M L  

r =O q=o s=o  p=o 

R-1 L M L  
c c o s  r E s in  E x  eqx og(r-s)  S(') . (27) 

+ kg 4-P P 
r =O q=o s=o p=o 

The following formulas are known: 

r 
r cos E =x d!r) cos i E  

1 

i = O  
and 

r t l  

c ! ~ )  sin i E  .. r 
COS E s i n E  = 

1 

i = l  

-12- 



where the coefficients d!r) and c ! ~ )  a r e  constant numbers .  

formula (28a), we have finally 

Using 
1 1 

R R 
F,(E)* p = k o C c o s i E  Zi t k o  sin i E Wi 

i = O  i= l  

To obtain the changes of elements, we shall  find i t  sufficient to inte- 

grate  this expression and multiply i t  by the constant coefficient K 

shall  make use of the relation E = nt t e s in  E to introduce time into 

the secular  t e r m  and shall  imply the condition that the periodic 

changes of elements will vanish in perigee. 

of an a rb i t r a ry  element u given a s  

We 
U S  

We have then the change 

Zf 
Au = K, ko Zo nt t K I T k o C  i sin i E  

i= 1 

R 
t K , k , z ?  (1 - c o s i E )  , 

where we denoted 

Z ;  = e Z O  t Z1 

and 

Zf = z i  , i f i > 1  . 

-1 3 -  



The coefficients Zi and Wi of the different t e r m s  can be writ ten as  

L R M L  T J L  

q = O  r = O  s = o  p=o t = O  P=O j = O  

and 

We used formula (6a) for  our computation. 

case  of the semimajor  axis and the eccentricity. 

argument  of perigee, we have to  use development (6b). 
will then be as follows: 

This is sufficient in the 

In the case of the 

The result  

Am = K  k Z O n t  
w o  

Rt1  
wi (1 - c o s i E )  , (31) 

+ Ko kg E s i n i E  t K w ko i 
i= 1 i=l  

where again 

Z; = Z1 t e Z O  

and 

Z f = Z i  , i f  i > l  

-14- 



and the coefficients a r e  given as  

L R M L  J L  T 

q = O  r = O  s=o  p=o 1=0 j=O t=O 

k(s - t )  xl, p- j  
1 5 t - j  > 

R t 2  

Z .  1 = d:r) (Hr - H r - 2  ) a and 
r =O 

-15- 



3 .  THE COMPUTATION OF THE INDIVIDUAL COEFFICIENT 
O F  THE SERIES 

The problem was thus solved in Section 2. To be able to use the 

expression practically, we would have to compute the individual t e rms .  

It is obvious that it is almost  impossible to obtain by analytical hand 

computation even the expressions for the secular  te rms .  

therefore t r y  to find some recur ren t  formulas for  the coefficients that 

appear in expressions (30) o r  (32).  

find the values of the coefficients a s  functions of the indices. 

not always possible, so we have to use some recur ren t  formulas.  

obtain for  the coefficients these expressions: 

We shall  

It would be best  i f  we could 

This is 

We 

A. The coefficients di ( r ) .  . 

d(4 = 1 
b. i f  i # 0 ,  then i zr-l(+) 3 

when r / 2  o r  ( r - 1 ) / 2  a r e  integers;  otherwise, d (”60 .  Moreover, i 
the indices must  satisfy the conditions i , r  L 0,  r L i ;  otherwise, 

again d ( l )  E 0 .  i 

B. The coefficients c ( r ) .  
i *  

a. i f  i = 0,  then 

b. i f  i # 0,  then 

-1  6-  



The indices must  satisfy the conditions i, j 2 0,  j t l  L i ;  otherwise, 

C .  The coefficients k(’) a re  given a s  
j 

( a )  - rn(1tl) ( 8 t 2 )  . . . ( a t ; - 1 )  k -  j j! , 

and the condition holds: j, I 1 0, k”) = 1. 0 

(s-t)  a r e  given according to fomulas (24) 5 D. The coefficients k 

and (14) a s  

i =O j =O 

The computation of these coefficients is not too complicated, the actual 

limits of the infinite s e r i e s  depending on the precision wanted. It can 

(s-t) make a convergent se r ies ,  several  5 be shown that the coefficients k 
first t e r m s  being of increasing value. 

depends on the values of the coefficients k 1, k2, k3, which a r e  again 

given a s  a combination of the initial orbital  elements and the coefficients 

in the density function, according to the formulas (9). 
obtain a sufficient number of coefficients is to determine this l imit  

numerically, since the analytical conditions, imposed on the number of 

t e r m s  in the se r i e s  (33), could lead to an immense number of t e rms .  

The rapidity of convergence 

The bes t  way to 

E. The coefficients x ” p- j  and y” p-J  a r e  given by some recur ren t  
t-; t-J 

formulas,  different fo r  individual values of p-j, which is in essence 

-17- 



the power of the orbital  eccentricity. 

according to  formulas  (19) and (20),  the coefficient n 

sions (15) and (16) is included in the t e r m s  X(’) (21), and so in the 

expressions for  x and y, too. The upper index p- j  must  be 2 0 ,  and 

if  we want to be prec ise  to the second power of eccentricity,  we have 

the following recur ren t  formulas, where we shall  write, for  the sake of 

brevity, a subscript  i instead of t - j :  

We have to keep in mind that 

I f rom expres-  

V 

J , O  
n 

Pt1,O - Pt1 
X i -- n (4 xf:: t B yi - B yf:;) 

P 

n 
Q t l ,  1 - Pt1 P,1 

X i -- n (A x::; t B yi - B yi-2 
1 

n 
(A y::: + B x:’ - A yf”) P t 1 , l  - Q t 1  

P Y i  n 

-1 8- 



We have the initial values 

and the conditions fo r  the values of indices 

p-j, t- j ,  L 0 . 

The coefficients n a r e  given by (16) and the values of A and B a r e  

given by (17). Thus we can  obtain, f r o m  formulas  (34) ,  the values 

of a l l  coefficients x and y needed. 

P 

u ( r -s)  a r e  different for  different elements 
gq 'P 

F. The coefficients 

LT and must  be computed f rom the se r i e s  (6a) o r  (6b). 

the number of these coefficients is not too high, and i f  we want precision 

t o  the second power of eccentricity, we have the expressions: 

Fortunately, 

a. the semimajor  axis a: 

-19- 



b. the eccentricity e: 

$1 = 0 = - 2  
8 

c. the argument of perigee a: 

The small  parameter  d was introduced by Sterne (1960) and contains 

the ratio of the velocity of the revolution of the satellite to the rotation 

of the earth.  

0 ( ~ 3 )  in expressions (35). 

It is given by (7). We have omitted the t e r m s  O(d2) and 

G. The coefficients k a re  given by (9)  and we have for different 0 
elements u different values of coefficient K according to 

r' 

A '  a 2  K = - C  - 
a d m  

2 K = K  .- 1 - e  
e a a 

1 - e  2)1/2 
K, = Ka a. e * 

where A' /m  i s  the cross-section a rea- to-mass  ratio of the satellite 

and C is the drag coefficient. d 

-20-  



4. THE CHANGES OF THE INDIVIDUAL ELEMENTS 

According to (8), the whole computation of the perturbations of 

any element spli ts  into two parts,  corresponding to the two par t s  of the 

density function, the second of which contains the description of the 

atmospheric bulge. It is obvious, with respect  to (8), that the first 

p a r t  of the density function (i. e . ,  i f  i = l) ,  does not give r i s e  to the 

coefficients W.  in the case  of the semimajor  axis a and the eccentricity 

e, nor to the coefficients Z .  in the case  of the argument of perigee. 

The secular  t e r m s  Z a r i s e  in the case  of a and e f rom both the first 

and the second par t s  of the densityfunction; in the case of w we obtain the 

secular  change only f r o m  the second par t  of the disturbing function. 

Thus, the pattern of coefficients in (29)  will be in the case of a and w 

as follows: 

1 

1 

0 

The left upper indices denote the element to which change the coefficients 

be long. 

-21 - 



The time derivative of the mean anomaly is 

where S is the radial  component of the disturbing function. 

shown by Izsak (1960) that the last t e r m  can be neglected, since i t  is 

e t imes  smal le r  than the second term. 

aly is then given as a combination of changes of the semimajor  axis 

and the argument of perigee. 

I t  was 

2 The change of the mean anom- 

Using the pattern of resu l t s  given in 

equation (36), we can wri te  for the change of the mean anomaly the 

expression 

R t 2  
- 2 [$: 2; QLn' t 4Tc Zi 'I2! s i n i E  , 

n= 1 i= l  i=l 

where 

-22-  



i f i > 1  . 

The changes of the longitude of the ascending node R and of the 
inclination i a r e  much smaller  than the changes of a, e, w , and M, 

since the equations for their changes contain the quantity d a s  a factor,  
which then appears in the coefficients c r i  gj, given in ( 3 5 ) .  The short-  

period perturbations of those elements a r e  thus negligible in our 

analysis . 

- 2 3 -  



0 

I 

5. NUMERICAL RESULTS 

We chose the orbit  of the satellite 1958 gamma (Explorer 3 ) ,  since 

the short-period perturbations of the orbi t  of this satell i te were computed 

by Izsak (1960) and we could compare both results.  

density model of the atmosphere used by Izsak was a very simple one, 

but the satellite had a low perigee and small eccentricity, so that it 

moved in  a region where the differences in  the course  of the atmospheric 

density determined by Izsak's o r  Jacchia 's  density function were not 

too great. We shall  s ee  that our results,  obtained f rom the first par t  

of the density function (8), a r e  in very good agreement with those ob- 

tained by Izsak. Of course, the perturbations corresponding to the 

second par t  of the density function a r e  of different shape and value. 

However, the 

The changes of the semimajor axis during one revolution a r e  

plotted in Figure 1. 

on the secular change. 

computed f rom the first par t  of the density function (8), the full line 

being the whole change, both parts of the density function included. We 

s e e  that the resul ts  do not differ substantially f rom those of Izsak, 

either i n  the shape o r  in  the numerical values. 

the semimajor  axis is  -1. 58 X 10 cm. 

corresponding to the effect of the bulge 
3 a value -4.89 X 10 cm. 

major  axis, corresponding to the effect of the bulge, a r e  plotted 

separately in Figure 2. 

and the scale is enlarged. 

The short-period perturbations a r e  superimposed 

The dotted curves correspond to the changes 

The secular change of 
5 The par t  of the density function 

contributes to this change with 

The short-period perturbations of the semi-  

The sums of cos (Wi) and s in  (Zi)  a r e  shown, 

The contribution of the second (bulge) par t  of the density function 

to the short-period perturbations of the argument of perigee is of the 

- 24- 
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same order  a s  in  the case  of the semimajor  axis. 

Figure 3, in  which the dotted line corresponds again to the perturbation 

of the element u without considering the atmospheric bulge. The bulge 

also causes  a secular  change in the argument of perigee, which has, 

i n  this case, the value of t2: 83 X 10 

It i s  shown in 

-5 during one revolution. 

The numerical  resul ts  were computed mainly to check the whole 

theory and computations procedure. 

method uncommon in classical  celestial  mechanics. 

tion of this calculation taxes current computer technology. 

This analysis was done by a 

The implementa- 
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